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M
athematician Leopold Kro-
necker stated “God created
the integers, all else is the
work of man,’’ alluding to

the fact that the natural numbers most
likely arose from physical counting, as in
one’s fingers or goats in the pasture.
Topology, however, is arguably a differ-
ent creature altogether and may have
had its own independent origins from
the physical world in the ubiquitous
knot—something that cannot be undone
without using the free ends because the
individual strands cannot move through
each other (1). One imagines a primor-
dial knot getting tied accidentally in
Cro-Magnon times and then tugged at
to no avail . . . perhaps eventually cut.
Of course, knots went on to have their
uses in early societies, still far from any
theoretical considerations but very much
related to their ability to bind or secure
things such as animals, sails, hair, etc.
Knotted strings were also used by the
Inca civilization for record-keeping and
possibly even communication (2), still a
few centuries before Euler began count-
ing bridge-crossings in Königsberg.

The discovery and synthesis of poly-
mers, long-chain molecules such as
DNA, has brought a renewed physical
relevance and context to knots (3, 4),
and with it a new direction of study. For
instance, it has been shown by the elec-
trophoresis of loop DNA that knot types
from the simplest trefoil to a knot with
10 crossings can occur at the molecular
level (5). Although knots were actually
tied recently in surfactant nanotubes by
micromanipulation (6), molecular knots
mostly occur in a spontaneous way,
driven by competition between a fluctu-
ating exploration of space due to
Brownian motion and the excluded-
volume effect (the string cannot pass
through itself). Knots are a natural and
sometimes irreversible result of this pro-
cess, and despite scientific study, it is
still true that ‘‘. . . a complete statistical
mechanical description of knots remains
unattained’’ (7).

So, how exactly does DNA or any-
thing like it become knotted? And are
all of the knots equally easy to tie? In
a recent issue of PNAS, Raymer and
Smith (8) provide specific answers to
some of these questions, including a
macroscopic experimental study and a
statistical model reproducing the main
observations. Interestingly, their model
connects back to the already well devel-
oped mathematical idea of a braid, one

of several ways of deconstructing a knot
(1, 9). This latest effort joins the long
history of interactions between the phys-
ical and the mathematical in the study
of knots, including famously the theory
proposed by Lord Kelvin that atoms are
vortex knots; this led to, among other
things, the compilation of the first knot
tables, with the hopes of explaining the
periodic table of the elements (for an
excellent discussion, see ref. 9).

Knot Theory vs. Knotted Things
Mathematically speaking, a knot is a
closed loop that is tied up in some way
in 3D space. One way of labeling a knot
is by the minimum number of crossings
it has; an index is then added to denote
the distinct types of knot with those
many crossings. For instance, ignoring
issues of chirality, there is only one knot
with three crossings (the trefoil 31) and
one with four crossings (the figure eight
41), but there are three with six cross-
ings (the 61, 62, and 63) (1).

Topologically, any rearrangements of
a given knot that do not involve cutting
and untying (by making free ends) are
equivalent versions or representations of
that knot; there is no issue of tight or
loose in knot topology. Conversely, two
knots are only considered different if
they cannot be rearranged into each
other in this way. However, one can
always introduce additional things math-
ematically that distinguish between dif-
ferent representations of the same knot,
such as being symmetric, as tight as pos-
sible, or minimal with respect to some
global function such as total curvature
or generalized ‘‘knot energy’’ (10). This
has been done and has indeed helped to
make knot theory more physically rele-
vant to knotted filaments, molecules,
strings, and other physical things (11).
In dealing with an unwanted everyday
knot, say in an extension cord, pulling
on it often makes it worse by making it
tighter. The question of a knot’s small-
est size or tightest configuration, known
as its ideal configuration (10), is akin to
the close packing problem for spheres,
but with a topological twist.

In the physical world, however, it is
usually strings with free ends, and not
loops, that get knotted, either acciden-
tally or with a purpose. Knots derive
their importance by the way that they
bind tightly, either by snagging on
themselves or by attaching and holding
something strongly. In terms of the
one-dimensional coordinate along the

string, a tight knot is nonlocal; points
distant in arc length actually come into
physical contact within the knot. It is
at these points that the tension de-
creases because of the friction between
the two parts of the string (12, 13),
allowing for the main technological
importance of certain knots: they hold.
Exactly which knots do or do not slip
off not only determines their utility but
also plays a role in the probability of
finding a particular knot tied spontane-
ously (8, 14, 15).

An extension of the definition of
a topological knot was made by defining
an ‘‘open’’ or ‘‘long’’ knot—meaning
that a standard ‘‘closed’’ or ‘‘compact’’
knot is cut somewhere and the two free
ends mapped out straight to infinity (16,
17). There can be several nonidentical
‘‘openings’’ for a given knot, depending
on its symmetries; for the most symmet-
ric class of knots, the torus knots, there
is only one kind of open knot. For in-
stance, there is only one open knot real-
ization of the 61 but several for the 63.
These open knots are closer to what can
tie and untie (in a string or chain) (14,
18) and what was studied by Raymer
and Smith (8).

Spontaneous Knotting—Not So Random
The fact is that open knots are every-
where. Although the classic example of
a knotted phone cord may soon become
a dimly remembered problem of an old
technology, the fundamental ubiquity of
knots comes from the fact that they tie
themselves: knots are generated by the
combination of a long string with some
sort of random motion. This is a sort of
derivative law of nature stemming from
the Second Law of Thermodynamics
(maximize entropy) as applied to long
floppy things: Long Things Get Tangled.
Some of you may have experienced this
as part of the 1% of the population with
a knotted umbilical cord at birth (19).
Perhaps more readily, put a piece of
twine in your pocket for a day or two
and see for yourself what a tangle you
may weave.

Thus, the random motions in every-
day life mimic the effects of Brownian
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motion on long molecules—spontaneous
knots writ large. There have been a
number of recent studies on the dynam-
ics of spontaneous knotting in the mac-
roscopic world, in either a shaken
hanging chain (14) or a chain bouncing
on a vibrating plate (18, 20). However,
the study by Raymer and Smith (8) is
remarkable for the sheer scope of its
statistics: �3,000 knots were tied.
Among the issues now coming to light is
that spontaneous knotting is apparently
not a random process. Whereas an ini-
tial, naive hypothesis would be that the
distribution of observed knots will be
the same as if drawn by a random walk
(this is a common modeling assump-
tion), further reflection indicates why
this might not be true. As Raymer and
Smith show, the probability of spontane-
ous knotting and the distribution of
knot types are determined by the tying
process itself: the mechanics by which
the free end threads itself through the
other parts, and the physics of the string
that puts it in that position before the
knot is tied.

Their experiments involve shaking a
string of various lengths in a closed box,
then removing it and looking at the
knots. Of course, it seems reasonable
that the longer the string, the more
likely it will tie itself up, but surpris-
ingly, they find that the probability of
knotting stops increasing at some length;
this was also observed independently for
a bouncing chain (20). The reasons for
this resistance to knotting are dynamic:
the string was too stiff or otherwise did

not have enough room to move about in
the box (8). This may have implications
for the knottedness of confined DNA.
And if you don’t want the drawcords on
your venetian blinds to knot themselves
up, get some stiffer cord—or a smaller
room.

Another experimental surprise came
in the types of self-tied knots that were
seen: ‘‘prime’’ knots were almost always
observed, meaning only one big tangled

knot, as opposed to several linked
‘‘composite’’ knots (1). Again, a random
hypothesis would have predicted both
kinds, something that is also often as-
sumed in modeling. These experimental
observations are reproduced in the
model proposed by Raymer and Smith
(8): a statistical treatment of the dynam-
ics of the free end as it passes around
loops in the string, which are repre-
sented mathematically by the braid
structure of the knot (1, 9). In this
model, the knot forms in two stages:
First, a loop or series of loops come to-
gether, and then the free end finds its
way through the tangle. This is treated
as an ‘‘equilibrium’’ process, in that a

rate of untying is also included by the
opposite process: unbraiding by the free
end. In other physical systems, different
untying mechanisms have been ob-
served, such as slipping (14, 15) or a
diffusion-like process (18). All of these
processes should be included in develop-
ing a Physical Theory of Knots, meaning
essentially the proper mechanics and
dynamics of knotted things. Fundamen-
tally, these are all answers to the follow-
ing question: Besides its topology, what
other characteristics does a physical
knot have?

Like caging a tiger or trapping a sin-
gle atom for study, Raymer and Smith
(8) have isolated a string in a small
box and studied the statistics of its
spontaneous knotting in detail. Future
implications extend in both directions:
mathematically, one wonders whether
new results will spring from the knot
statistics implicit in this braid-move
model, while physically any number of
complicating factors could be included
next. Would a prime knot pre-tied at
the center of the string (either tightly or
loosely) induce or inhibit further knot-
ting? Would two strings more readily tie
together or individually self-tie? More
importantly, will these observations turn
out to be universal for physical knots, or
will there be several different types of
self-tying knots? Are there universal
laws for the dynamics of knots? There is
much to be done. It seems increasingly
clear that the study of physical knots has
come into its own as an experimental
science.
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17. Pierański P, Przybył S, Stasiak A (2001) Eur Phys

J E 6:123–128.
18. Ben-Naim E, Daya ZA, Vorobieff P, Ecke R

(2001) Phys Rev Lett 86:1414–1417.
19. Goriely A (2005) in Physical and Numerical Models

in Knot Theory, Series on Knots and Everything,
eds Calvo J, Millett K, Rawdon E, Stasiak A
(World Scientific, Singapore), Vol 36, Chap 6.

20. Hickford J, Jones R, duPont S, Eggers J (2006)
Phys Rev E 74:052101.

The fundamental
ubiquity of knots

comes from the fact that
they tie themselves.

17244 � www.pnas.org�cgi�doi�10.1073�pnas.0708150104 Belmonte


